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INTERPOLATION FORMULA FOR THE THICKNESS OF A SHOCK FRONT
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The problem of the thickness of the discontinuity or
the structure of a shock wave cannot be solved exactly
even in the simplest case of a gas of elastic spheres.
This explains the interest being shown in assumptions
which simplify the solution of the kinetic equation for
a shock wave (as in the well-known Mott-Smith solu-
tion). In what follows an attempt is made to restrict
the argument to the general principles of statistical
mechanics in order to describe the thickness of the
shock (without describing its structure quantitatively),
making use of simpler, but less likely assumptions.
The concrete examples will only be rough illustrations
of the proposed method [1] of evaluating the thickness
of the shock in various media.

1°. For a certain class of processes, to which
shock waves also belong, we postulate, the intuitively
clear and fairly general* condition that they are ma-
croscopic in the form of an inequality between the
characteristic phase space of the whole macropro-~
cess and the average phase space of the particles of
the medium (figure)

h s
Azdp, > (Babp.> = 5oexp <m> . (48]

where the sign ~ is to be understood as the ideal-gas
approximation. The states separated by the unknown
thickness of the discontinuity Ax (the brackets ¢...)
signify an average taken over this thickness), over

which the average particle momentum varies by Apy,
are indistinguishable if this condition is not fulfilled.
It is interesting that the well~known property of weak

shocks, in which the entropy of the particle S/N varies

inappreciably, may be deduced directly from the ne-
cessary condition

<8xdp,> const {
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The Rankin-Hugoniat relation for strong shocks
gives Apy = 6pax Vf (here f is the number of degrees
of freedom of a particle (molecule) in the medium,
which is assumed to be fixed), i.e., for a shock
Mach number M — «, inequality (1) reduces to the
trivial condition of macroscopy or continuity

Az > > = <'1VV>%. (2)

*Generally speaking, the definition of macroscopy
is not unique (see [2,3], etc.). Condition (1) is suf-
ficient by reason of the fact that it is invariant re-
lative to canonical transformation of variables ap-
pearing in it, as distinet from condition (2), which is
trivial.

Here the sign 3 results from the fact that the inde-.
terminancy of the position of a molecule cannot be
less that the average distance between molecules,

A typical "instantaneous snapshot" in phase-
space p of the structure of the discontinuity —
in the approximation of local thermodynamic
equilibrium. The indeterminacy of finding a
molecule in phase space is shown by the rec-
tangles. The continuous curve shows the
change in the average (hydrodynamic) vari-
ables. The shock wave propagates in a gas of
elestic spheres (& = 3.1070 m, (N/V),;~10% m™3)
with the molecular weight of argon. The
wave velocity is ®#5800 m/sec, the degree of
compression is V{/V, = 4, T,/T; = 100,
0pyx ® 106px ~ m (2500 m/sec), 6x, ¥107° m
Ay~ 0xy 7 631070 m

For a cold medium (when S/N — 0) the general
condition for the medium to be macroscopic coincides
with Heisenberg's indeterminacy relation

AzApy > h /2%,

2°, The simplest relation satisfying condition (1) is
a linear one, which is postulated here,

AzAp, = A (8zbp,> o

<6xbp,.>
or Ar=A—fr Ap, = AP 5q exp<.,Nk> 3)

For central interactions of the molecules the pas-
sage of the medium to a new equilibrium state (more
exactly, the randomizing of molecule velocities over
the three coordinates) requires a minimum of two
collisions per molecule on the average, since a single
collision can change the particle velocities only inthe
plane of interaction, i.e., on experiencing one more
collision, a molecule (of the type of an elastic sphere)
may "forget" its previous distribution (cf. [4]).
Whence the minimum "roughness of approximation®
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of the description of the discontinuity in terms of the
variable (Ax, Apyg),

4o AzAp, Az Ap,
F (Bzdpy T <6 Opy,

is

; 20 VY 20 1 (V2 [V
i S (V/N);/»~{5 (‘N)l} ~(7v)1

for a gas of spheres with fixed diameter &.

If the indeterminancy of particle momentum [5] in
the medium épy = vmkT, then for A independent of
the strength of the shock, we obtain the following
rough estimate:

lim A Vs ' kT,
L — —__<(W) (mkT)! zz;uﬂ__l/_m__)?_h

Apx Uy — Uz

(M — o). (4)

A one-parameter form of this estimate of the
minimal shock thickness

PR ¢ S —
Mmmz—Mz(TiV(M’——l/a)(M2+3)—>2<x> (M —o0) (5)

is obtained* for the more general condition A~ o if
we use the Rankin~Hugoniot relation and the equation
of state of an ideal gas with f = 3. In the "equidistri-
butional® approximation formulas similar to (5) are
obtained for an arbitrary number f of degrees of
freedom of the molecules on the condition that the
medium in a one-component gas (see below).

The minimal estimate of the thickness of an isen-
tropic wave (when the equilibrium states are related
by Riemann's invariant) should be similarly deduced,
and represent the limit of applicability of the isentro-
pic description of the process of increase of the slope
of a Riemann wave. Here Liouville's theorem plays
a part similar to Heisenberg's indeterminancy rela-
tion. When the front of an isentropic wave becomes
steep enough, then we may expect, quite independently
of the form of the dissipative "mechanisms," the
development of fairly strong "phase mixing," which
may (for example, in a plasma with a magnetid field)
be accompanied by oscillations of the parameters of
the medium. Apparently, the establishment of a
stationary and equilibrium state lasts appreciably
longer than the relaxation time in the discontinuity
(cf. [7]). However, we stress that it has not been
vigorously demonstrated that real shocks are sta-
tionary for any medium.

*This is equivalent to assuming that the Reynolds
number relative to the thickness of the shock (cf.
61

Roo Aubz _Aubz  Aubw fa) Ap Az i—i
e=TGn T Buy <My <bubzy <Ay - (Spdzy A

is independent of the number M of the initial flow in
the coordinate system of the shock.
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In a "collisionless" plasma counter-beams of ions
are formed when a Riemann wave inverts. Judging by
certain theoretical ([8], etc.) and experimental [9]
data a collisionless shock may arise whose minimal
thickness is estimated by the Larmor, Debye or ion
characteristic radius r. For such a shock, moving
across the magnetic field in an ideal plasma (when
one translational degree of freedom of the charged
molecule may be disregarded), the estimate is of the
form

Az = Mzi>1 VOE=G)(ME T2~ C<ry (M- o). (6)

Allowing roughly for the fact that the medium has
two components

o=(mg)”

(here i refers to the ions, e to the electrons), although
the effects noted in[10], together with other effects,
may restrict the applicability of this formula for C.

The question of the experimental verification of
such estimates is as yet open, since the interpreta-
tion of the results of astro—~ and geophysical observa-
tions and experiments in shock tubes and other de-
vices is notso simple (it suffices to recall the example
[11] of the rejection of previously widely accepted
data concerning the structure of the discontinuity in
a "collisionless" plasma). )

However, verification if possible in the case of a
medium comparable to a gas of elastic spheres (i.e.,
for (4), (5)) which does not manifest appreciable de-
partures from the results of calculations of shock
structure carried out by the Monte-Carlo [12] method
(computational experiment with molecular spheres).
For example, formula (5) gives for the thickness of
the shock (for (A) = Ay):

M =1 1.5 2 3 00
X(s) ~o0 2,625 1.72 1.28 41.00
Xm]z 10 2.425 1.53 1.3 ?

(here X = Ax/22;). Similar verifications of the basic
assumption (3) compel us to investigate its applica-
bility to other media also, for example, to crystals
(then A is the free path of quasiparticles).

3°. Determination of the range of applicability and
a stricter inspection of the consequences of postulate
(3) allow us to indicate a class of dissipation mecha-
nisms to which an expansion rule of the type

o> F2
Az = Ay F (M), {121(200} (1)
also extends, as well as other assertions associated
with postulate (3).

The tending of the shock thickness of some char-
acteristic length (for example, the mean free path),
as the number M increases, is apparently caused by
two basic concurrent factors: the macroscopic (hy-
drodynamic) tendency towards lesser shock thick-
nesses (the factor F) and the existence of a micro-
scopic mechanism for establishing a new and still
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more distant* equilibrium state (in (7) the factor

{M\)). Thus for dissipation with central interactions
between molecules, i.e., forces ~1/R®, the absolute
shock thickness may be minimal at moderate M, since
the free path

MT, NJV)~ (T (N V) oo
(00 >5>2)

M >0
{ T+

NIV »

(cf. [13,14]). Here the roughness of approximation or
the "dimensionless number of states" A behaves like
the shock thickness

A~ Ax = (k) — oo,

In particular, for Maxwellian molecules S = 5),
this approximation provides a simple form for the
relationghip to M (see [15,16]);

lim Az = A~ To P~ M = oo

The greatest gradients of a shock profile with a
"thermodynamic" thickness lim Ax = A, + A, will
clearly be determined by the smallest of the paths,
i.e., by the path A, in the case under consideration
{cf. [171)

4°. An interesting consequence of postulate (3) is
the prediction of the widening of the shock as a re-
sult of a purely nonequilibrium effect, the existence
of which does not depend on the dissipation mecha-
nism. This effect may be explained with the help of
the following loose discussion. If the average phase
volume per unit molecule inside the shock is eva-
luated (as in the simplified transition from 3) to 4))
according to finite values of (S/N), and 6pyx, inde-
pendent of the structure of the shock, then large
estimates of the thickness Ax, ;, correspond to large
departures from local equilibrium within more in-
tense shocks. Thus the minimal thickness should be
obtained in local~equilibrium models of shock front
structure,

This assetion is based on the fact that the entropy
attaing a maximum for an equilibrium Gibbs dis-
tribution over a fixed phase region. Thus it is clear
that the minimal estimate of the size of the phase
volume, i.e., the minimal value of Ax also (for a
fixed indeterminancy of momentum), should corres-
pond to a fixed estimate of entropy (as in our case)
precisely for a local-equilibrium shock structure.
The difference in the estimates of the shock thick-
ness from the Navier-Stokes and kinetic models [17~—
21} confirms this. Similar general arguments tend
to support the assertion that the entropy peak pre-
dicted by local-equilibrium models (cf. Fig. 10 in
[12a]) decreases as departures from local equilibrium
within the shock become larger.

*By definition the shock separateg equilibrium states,
and so, strictly speaking, Ax =« for any shock Mach
number. However, we are interested in the effective
thickness of the shock separating states which are
fairly close to the boundary equilibrium states,

5°. For such media as plasmas, which are still
problematical in many respects, the accuracy of the
estimate of the shock thickness depends on knowing
the equilibrium state at least. This is equivalent to
knowing the statistical sum or the phase volume of
the subsystem under consideration. For transitions
from 3) to (4)—(6) we must know the number of de~
grees of freedom for particles of the medium (in
order to solve the problem even in the approximation
of equal distribution of energy). Taking into account
the electrostatic interaction of particles in a plasma,
for example, gives a smaller value of the equilibrium
entropy (Debye approximation—see [22]), i.e., a
lesser estimate of the thickness of a shock with the
same finite temperature. Quasiparticles, among
which fluctuations of the electromagnetic field must
be counted, may make a substantial contribution to
the entropy of the plasma (cf. {23], etc.). We also
note that the "hydrodynamic relaxation time" in a
plasma may turn out to be appreciably less then the
time for establishing local thermodynamic equili-
brium [24]. This requires us to refine our concept
of the thickness of the shock, and will probably render
the interpretation of experimental data more difficult.

An experimental verification of the thickness of
the shock is not a trivial matter, not only from the
point of view of the ambiguity of the thickness concept
[6], but also because of the possible interference in
the shock compression process due to the measuring
process, For example, a wire-resitance type probe
may bring the state within the shock closer to local
equilibrium and even "confirm" the theory of shock
structure in the Navier-Stokes approximation.

The purest measurements may be expected to
result from the application of quantum oscillators
working at different wavelengths (in investigations of
the shock structure in solids in the gamma— and X-
ray range).

The author thanks K. E. Gubkin and V. S.
Imshennik and the coworkers of the Theoretical Di-
vision of the Institute of Physics of the Academy of
Sciences Latvian SSR for their stimulating criticism.
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